

${ }^{1.5}$ The DPSC Series compact dual-acting cylinder

This series of compact cylinders comply with the standard ISO 21287, with a cylinder diameter of $\phi 12 \sim \phi 100$, low friction coefficient, good cushioning characteristics, long service life, and easy installation.

Summary
This series of compact cylinders comply with the
standard 1 IO 21287 , with a cylinder diameter of ϕ $12 \sim \phi$ 100, , low friction coefficient, food cushioning
characteristics, Iong service life, and easy character istic
installation.

Model selection

DPSC	-32	$\times 50$		-P	A	-R
Compact cylinder	(1)	(2)		(3)	(4)	(5)
(1)	-Diameter:12 1620253240506380100					
(2)	\times Stroke range: refer to datasheet					
(3)	-cushion: P=Elastic cushioning;PPS=cushioning (without¢12, 16)					
(4)	Position sensing: A=Via magnetic switch					
(5)	-Variants					
	Piston rod type			Piston rod thread type		Temperature range
		At one end	F	Male thread		Standard
	2	Through piston rod		Female thread	T	$-40-80^{\circ} \mathrm{C}$
					R	Heat-resistant seals max. $120^{\circ} \mathrm{C}$

Note1) TZ can cooperate with TA/TB
DATASHEET[mm]

Diameter	Standard stroke	Maximum stroke	Buffer stroke
12	5, 10, 15, 20, 25, 30, 40	300	-
16	5, 10, 15, 20, 25, 30, 40, 50		
20	5, 10, 15, 20, 25, 30, 40, 50, 60		3
25			3.5
32	5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80	400	4
40			5
50			6
63	$10,15,20,25,30,40,50,60,70,80$		7
80		500	7.5
100			10

Note: Please contact us for any other special trips.
Technical parameters

Piston Diameter $¢ \mathrm{~mm}$		12		16		20	2	25	32		40		50	63	80	100
Mode of operation		Double-acting														
Cushioning	P	Elastic cushioning rings/plates on both sides														
	PPS	-				Pneur	cus	chio	djus	stable a	both					
Cushioning length		-				3		3.5	4		5	6	6	7	7.5	10
Pneumatic connection		M5		M5		M5		M5		1/8						
Position sensing		Via magnetic switch														
Type of mounting		VThrough-hole			\square Female thread			\square Accessories								
Mounting position		An														
Female piston rod thread		M		M4		M6			м	18			M10		M12	
Male piston rod thread		M		M6		M8				10x1.25			M12x1.25			

-Technical parameters

Operating and environmental conditions										
Piston Diameter $\phi \mathrm{mm}$	12	16	20	25	32	40	50	63	80	100
Operating medium	Compressed air to ISO 8573-1:2010 [7:4:4]									
Operating pressure MPa	0.1~1	0.06~1								
Environmental and fluid temperature ${ }^{1)} \quad{ }^{\circ} \mathrm{C}$	$-20 \sim 80$									
Corrosion resistance class ${ }^{2}$	2									

Forces [N] and impact energy [J]										
Piston Diameter $\phi \mathrm{mm}$	12	16	20	25	32	40	50	63	80	100
Theoretical force at 6 bar, advancing	68	121	188	295	483	754	1178	1870	3016	4712
Theoretical force at 6 bar, retracting	51	90	141	247	415	686	1057	1750	2827	4524
Max. impact energy in the end positions	0.07	0.15	0.2	0.3	0.4	0.7	1	1.3	1.8	2.5
For self-adjusting cushioning (PPS)	-	-	0.65	0.8	1	1.7	2.8	4.8	8	12
Note: \checkmark Permissible impact velocity E Max. impact energy m_{1} Moving mass (drive) m_{2} Moving payload	Permissible impact speed: $V=\sqrt{\frac{2 \times E}{m_{1}+m_{2}}} \quad$ Maximum permissible mass: $m_{2}=\frac{2 \times E}{V^{2}}-m_{1}$ These specifications represent the maximum values that can be achieved. The maximum impact energy is still maintained in combination with the self-adjusting cushioning PPS									

1) Note operating range of proximity switches
[1] No corrosion resistance: Suitable for small and inconspicuous standard parts such as usually phosphorylated or polished threaded pins, clamp springs and clamsleeves, and also for ball bearings and sliding bearings.
[2] Moderate corrosion resistance: applications where condensate may occur. External visual parts used for surface decoration requirements are in direct contact with the environmental l limate of typical industrial applications.
[3] High corrosion reas I3 tigh corrosion resistance: outdoor exposure to moderate corr

Structure Diagram

Compact cylinder		
[1]	Cover	
	¢ $12 . . .80$	Anodized aluminium
	100	Coated die-cast aluminium
[2]	Cylinder barrel	Anodized aluminium
[3]	Piston rod	High-alloy steel
[4]	Flange screws	
	¢ $12 . .16$	High-alloy steel
	¢ $20 . . .63$	Galvanized steel
	¢ 80 ... 100	Standard screws, galvanized steel
-	Seals	Polyurethane/Fluoro rubber

Dimensions

Diameter $\Phi 12 \sim 63$

Diameter $\Phi 80 \sim 100$

Type of mounting

LB Axial foundation Type

Material: Galvanized sted

Dimensions									
$\begin{aligned} & \hline \text { Diameter } \varnothing \\ & {[\mathrm{mm}]} \end{aligned}$	$\stackrel{A B}{\otimes} \mathrm{H} 14$	$\begin{array}{\|l\|l\|} \hline \text { AH } \\ \text { JS14 } \end{array}$	AO	$\begin{array}{\|l\|l\|} \hline A T \\ \pm 0.5 \end{array}$	$\begin{aligned} & \mathrm{AU} \\ & \pm 0.2 \end{aligned}$	SA	$\begin{array}{\|c\|} \hline \text { TR } \\ \pm 0.2 \end{array}$	$\begin{array}{\|l\|} \hline \text { US } \\ -0.5 \end{array}$	XA
12	5.8	21	5	3	13	61	16	26	52.2
16		22	4.75				18	27.5	52.9
20	7	27	6.25	4	16	69	22	34.5	58.7
25		29				71	26	38.5	60.7
32		33.5	7			76	32	46	66.2
40	10	38	9		18	81	36	54	69.2
50		45	8	5	21	87	45	64	74.2
63		50				91	50	75	78.2
80	12	63	10.5	6	26	106	63	93	89
100	14.5	74	12.5		27	121	75	110	103

FA/FB Front Flange Type
Material: Galvanized steel

$\begin{aligned} & \text { Diameter } \varnothing \\ & {[\mathrm{mm}]} \end{aligned}$	E	$\stackrel{\text { FB }}{8}$	MF	R	TF	$\begin{aligned} & \mathrm{UF} \\ & \pm 1 \end{aligned}$	zF
12	28	55	8	-	40	50	47.2
16	29				43	55	47.9
20	36	6.6			55	70	50.7
25	40				60	76	52.7
32	45	7	10	32	64	80	60.2
40	54	9		36	72	90	61.2
50	65		12	45	90	110	65.2
63	75			50	100	120	69.2
80	93	12	16	63	126	150	79
100	110	14		75	150	175	92

Type of mounting

CA Single Ear Carrier Form

Material:
$\phi 12 \ldots$. 25 : $\begin{aligned} & \text { rought aluminium alloy } \\ & \$ 32 . . .10: \text { : } 0 \text { ompressed Cast Aluminum }\end{aligned}$

$1 \mathrm{e}=\mathrm{c}_{3}^{0}$

Dimensions								
Diameter \varnothing $[\mathrm{mm}]$	$\begin{aligned} & \mathrm{CD}_{\varnothing \mathrm{H}} \end{aligned}$	E	Ew	$\begin{aligned} & \text { FL} \\ & \pm 0.2 \end{aligned}$	L	MR	TG	xc
12	6	25-0.6	12 h 12	16	10	6	16	55.2
16		27.5-0.6					18	55.9
20	8	34.5-0.6	16 h 12	20	14	8	22	62.7
25		38.5-0.6					26	64.7
32	10	45+0.2/-0.5	26-0.2/-0.6	22	13	10	32.5	72.2
40	12	54-0.5	28-0.2/-0.6	25	16	12	38	75.2
50		64-0.6	32-0.2/-0.6	27			46.5	80.2
63	16	75-0.6	40-0.2/-0.6	32	21	16	56.5	89.2
80		93-0.8	50-0.2/-0.6	36	22		72	99
100	20	110-+0.3/-0.8	60-0.2/-0.6	41	27	20	89	117

Swivel flange $C A Q$
Material:
$\$ 32 . . .50:$ Compressed Cast Aluminum
$\$ 63 . .100$: Wrought aluminium alloy

Dimensions										
$\begin{aligned} & \text { Diameter } \varnothing \\ & {[\mathrm{mm}]} \end{aligned}$	$\stackrel{C N}{\ominus}$	E	$\begin{aligned} & \text { EP } \\ & \pm 0.2 \end{aligned}$	EX	$\begin{aligned} & \text { FLL } \\ & \pm 0.2 \end{aligned}$	LT	ms	$\begin{gathered} \text { RA } \\ +1 \end{gathered}$	TG	xc
32	10+0.013	45+0.2/-0.5	10.5	14	22	13	$15+0.5$	14.5	32.5	72.2
40	12+0.015	54-0.5	12	16	25	16	$17+0.5$	17.5	38	75.2
50	$16+0.015$	64-0.6	15	21	27	16	$20+0.5$	18.5	46.5	80.2
63	$16+0.015$	74.5 ± 0.5	15	21	32	21	23-0.5	23	56.5	89.2
80	20+0.018	92.2 ± 0.8	18	25	36	22	28-0.5	25	72	99
100	20+0.018	109+1/-0.7	18	25	41	27	30 ± 0.5	95	89	117

Type of mounting

Clevis foot

Material: Galvanised steel

Dimensions									
$\begin{aligned} & \text { For Diameter } \\ & \varnothing[\mathrm{mm}] \end{aligned}$	CM	$\stackrel{\text { EK }}{\ominus}$	FL	GL	$\stackrel{H B}{\ominus}$	LE	MR	RG	ux
12/16	12.1	6	27 +0.3/-0.2	13	5.5	24	7	15	25
20/25	16.1	8	$30+0.4 /-0.2$	16	6.6	26	10	20	32

CB Double-Ear Carrier Form

Material: Compressed Cast Aluminum

Dimension									
For Diameter $\varnothing[\mathrm{mm}]$	CB H14	E	EK \varnothing H9/e8	FL ± 0.2	L	MR -0.5	TG	UB h14	XC
32	26	$45+0.2 /-0.5$	10	22	13	8.5	32.5	45	72
40	28	$54-0.5$	12	25	16	12	38	52	76
50	32	$64-0.6$	12	27	16	12	46.5	60	80
63	40	$75-0.6$	16	32	21	16	56.5	70	89
80	50	$93-0.8$	16	36	22	16	72	90	99
100	60	$110+0.3 /-0.8$	20	41	27	20	89	110	117

-Type of mounting

TA/TB front axle end pin seat type

Materia: Stainless steel casting

Dimensions									
For Diameter $\varnothing[\mathrm{mm}]$	C2	C3	TD \varnothing e9	TK	TL	TM	US	XH	XL
32	71	86	12	16	12	50	45	2	58
40	87	105	16	20	16	63	54	4	61.1
50	99	117	16	24	16	75	64	4	64.7
63	116	136	20	24	20	90	75	4	68.5
80	136	156	20	28	20	110	93	5	76.9
100	164	189	25	38	25	132	110	10	95

Trunnion support TZ

Material. support: Anodz
Tlunion
Plainearing: Plastic

Dimensions											
For riameter $\varnothing[\mathrm{mm}]$	CR \varnothing D11	DA \varnothing H13	FK $\varnothing \pm 0.1$	FN	FS	H1	HB \varnothing H13	KE	NH	TH ± 0.2	UL
32	12	11	15	30	10.5	15	6.6	6.8	18	32	46
40,50	16	15	18	36	12	18	9	9	21	36	55
63,80	20	18	20	40	13	20	11	11	23	42	65
100	25	20	25	50	16	24.5	14	13	28.5	50	75

Peripherals overview

Mounting attachments and accessories			
Number	Code	Named	Description
1	LB	Axial Foundation	For bearing or end caps
2	TA/TB	Axle pin seat	For bearing or end caps
3	TZ	Trunnion support	For Axle pin seat
4	FA/FB	Front/rear flange	For bearing or end caps
5	CA	Single-ear	For caps
6	св	Double-ear	For bearing or end caps
7	u	Clevis foot	For bearing or end caps
8	CAQ	Single Ear with spherical bearing	For end caps
9	CBG	Clevis foot	For bearing or end caps
10	FD	Floating junction	For compensating radial and angular deviations
11	Y	Y joint	Permits a swivelling movement of the cylinder in one plane
12	1	I joint	Permits a swivelling movement of the cylinder in one plane
13	w	Fish eye joint	With spherical bearing
14	CBZ	Right-angle clevis foot	For Fish eye joint
15	YF	Y joint	With male thread
16	NSE	One-way flow control valve	For speed regulation
17	PC	Push-in fitting	For connecting compressed air tubing with standard O.D.
18	-	Magnetic switch	Can be integrated in the cylinder profile barrel

Accessories
-Piston rod accessories

Name	For Diameter \varnothing	Type	Name	For Diameter \varnothing	Type
Fish eye jointYY			I joint		
	16	YY-M6		32	I-M10*1.25
	20, 25	Y-M8		40	I-M12*1.25
	32,40	W-M10x1.25		50,63	I-M16*1.5
	50,63	W-M12x1.25		80, 100	I-M20*1.5
	80, 100	WY-M16x1.5		125	--M27*2
	125	Y-M20x1.5			
Y joint			Floating junction FD		
	12	-		12	FD-M5
	16	Y-M6		16	FD-M6
	20, 25	Y-M8		20,25	FD-M8
	32,40	r-M10x1.25		32,40	FD-M10x1.25
	50,63	Y -M12×1.25		50,63	FD-M12x1.25
	80, 100	Y-M16x1.5		80, 100	FD-M16x1.5
	125	Y-M20x1.5		125	FD-M20x1.5

.C Magnetic switch

Magnetic switch-reed type is used for T -groove						
	Type of mounting	Switching output output	Connection	Cable of length m	Code	Diameter ϕ
Normal open						
	Insertable in the slot from above, cylinder profile	PNP	Magnetoresistive, 3-wire	1.3	CDX-32P-1.3	12-100
		NPN	Magnetoresistive, 3-wire	1.3	CDX-32N-1.3	
		R	Tongue spring type,2-wire	1.3	CDX-32R-1.3	
				2.5	CDX-32R-2.5	

© Without the authorization of Hengli Pneumatic Company, any part of this brochure shall not be reproduced, edited, copied or disseminated electronically in any way. As the product is in constant development and innovation, the information in this brochure is not specific to the special conditions or applicability of a specific industry, and Hengli Pneumatic is not responsible for any incomplete or inaccurate description as generated thereby.

